Finite-Sample Analysis for Decentralized Batch Multiagent Reinforcement Learning With Networked Agents

نویسندگان

چکیده

Despite the increasing interest in multiagent reinforcement learning (MARL) multiple communities, understanding its theoretical foundation has long been recognized as a challenging problem. In this article, we address problem by providing finite-sample analysis for decentralized batch MARL. Specifically, consider type of mixed MARL setting with both cooperative and competitive agents, where two teams agents compete zero-sum game setting, while within each team collaborate communicating over time-varying network. This covers many conventional settings literature. We then develop algorithms that can be implemented fashion, quantify errors estimated action-value functions. Our error captures how function class, number samples iteration, iterations determine statistical accuracy proposed algorithms. results, compared to bounds single-agent learning, involve additional terms caused computation, which is inherent our setting. article provides first MARL, step toward rigorous general regime.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents

We consider the problem of fully decentralized multi-agent reinforcement learning (MARL), where the agents are located at the nodes of a time-varying communication network. Specifically, we assume that the reward functions of the agents might correspond to different tasks, and are only known to the corresponding agent. Moreover, each agent makes individual decisions based on both the informatio...

متن کامل

Reinforcement Social Learning of Coordination in Networked Cooperative Multiagent Systems

The problem of coordination in cooperative multiagent systems has been widely studied in the literature. In practical complex environments, the interactions among agents are usually regulated by their underlying network topology, which, however, has not been taken into consideration in previous work. To this end, we firstly investigate the multiagent coordination problems in cooperative environ...

متن کامل

Optimal Sample Selection for Batch-mode Reinforcement Learning

We introduce the Optimal Sample Selection (OSS) meta-algorithm for solving discrete-time Optimal Control problems. This meta-algorithm maps the problem of finding a near-optimal closed-loop policy to the identification of a small set of one-step system transitions, leading to high-quality policies when used as input of a batch-mode Reinforcement Learning (RL) algorithm. We detail a particular i...

متن کامل

Sample Bounded Distributed Reinforcement Learning for Decentralized POMDPs

Decentralized partially observable Markov decision processes (Dec-POMDPs) offer a powerful modeling technique for realistic multi-agent coordination problems under uncertainty. Prevalent solution techniques are centralized and assume prior knowledge of the model. We propose a distributed reinforcement learning approach, where agents take turns to learn best responses to each other’s policies. T...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2021

ISSN: ['0018-9286', '1558-2523', '2334-3303']

DOI: https://doi.org/10.1109/tac.2021.3049345